Modulation of nucleosome-binding activity of FACT by poly(ADP-ribosyl)ation
نویسندگان
چکیده
Chromatin-modifying factors play key roles in transcription, DNA replication and DNA repair. Post-translational modification of these proteins is largely responsible for regulating their activity. The FACT (facilitates chromatin transcription) complex, a heterodimer of hSpt16 and SSRP1, is a chromatin structure modulator whose involvement in transcription and DNA replication has been reported. Here we show that nucleosome binding activity of FACT complex is regulated by poly(ADP-ribosyl)ation. hSpt16, the large subunit of FACT, is poly(ADP-ribosyl)ated by poly(ADP-ribose) polymerase-1 (PARP-1) resulting from physical interaction between these two proteins. The level of hSpt16 poly(ADP-ribosyl)ation is elevated after genotoxic treatment and coincides with the activation of PARP-1. The enhanced hSpt16 poly(ADP-ribosyl)ation level correlates with the dissociation of FACT from chromatin in response to DNA damage. Our findings suggest that poly(ADP-ribosyl)ation of hSpt16 by PARP-1 play regulatory roles for FACT-mediated chromatin remodeling.
منابع مشابه
Regulation of NFAT by poly(ADP-ribose) polymerase activity in T cells.
The nuclear factor of activated T cells (NFAT) family of transcription factors is pivotal for T lymphocyte functionality. All relevant NFAT activation events upon T cells stimulation such as nuclear translocation, DNA binding, and transcriptional activity have been shown to be dictated by its phosphorylation state. Here, we provide evidence for a novel post-translational modification that regul...
متن کاملRegulation of MeCP2 induced heterochromatin remodeling
4.1 Molecular biology methods 28 4.1.1 Construction of expression plasmids 28 4.2 Cell biology methods 29 4.2.1 Cell culture and transfection 29 4.2.2 ImmunoFISH 30 4.2.3 Microscopy, image analysis and statistical evaluation 31 4.3 Biochemical methods 32 4.3.1 In vivo protein interaction assays 32 4.3.2 In vitro protein interaction assays 33 4.3.3 Western blot analysis 34 4.3.4 In vitro poly(AD...
متن کاملRegulation of p53 sequence-specific DNA-binding by covalent poly(ADP-ribosyl)ation.
We have characterized the covalent poly(ADP-ribosyl)ation of p53 using an in vitro reconstituted system. We used recombinant wild type p53, recombinant poly(ADP-ribose) polymerase-1 (PARP-1) (EC ), and betaNAD(+). Our results show that the covalent poly(ADP-ribosyl)ation of p53 is a time-dependent protein-poly(ADP-ribosyl)ation reaction and that the addition of this tumor suppressor protein to ...
متن کاملPoly(ADP-ribosyl)ation of heterogeneous nuclear ribonucleoproteins modulates splicing
The biological functions of poly(ADP-ribosyl)ation of heterogeneous nuclear ribonucleoproteins (hnRNPs) are not well understood. However, it is known that hnRNPs are involved in the regulation of alternative splicing for many genes, including the Ddc gene in Drosophila. Therefore, we first confirmed that poly(ADP-ribose) (pADPr) interacts with two Drosophila hnRNPs, Squid/hrp40 and Hrb98DE/hrp3...
متن کاملPoly(ADP-ribosyl)ation Regulates Insulator Function and Intrachromosomal Interactions in Drosophila
Insulators mediate inter- and intrachromosomal contacts to regulate enhancer-promoter interactions and establish chromosome domains. The mechanisms by which insulator activity can be regulated to orchestrate changes in the function and three-dimensional arrangement of the genome remain elusive. Here, we demonstrate that Drosophila insulator proteins are poly(ADP-ribosyl)ated and that mutation o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 34 شماره
صفحات -
تاریخ انتشار 2006